Dynamic range of safe electrical stimulation of the retina

نویسندگان

  • Alexander F. Butterwick
  • Alexander Vankov
  • Phil Huie
  • Daniel V. Palanker
چکیده

Electronic retinal prostheses represent a potentially effective approach for restoring some degree of sight in blind patients with retinal degeneration. However, levels of safe electrical stimulation and the underlying mechanisms of cellular damage are largely unknown. We measured the threshold of cellular damage as a function of pulse duration, electrode size, and number of pulses to determine the safe range of stimulation. Measurements were performed in-vitro on embryonic chicken retina with saline-filled glass pipettes for stimulation electrodes. Cellular damage was detected using Propidium Iodide fluorescent staining. Electrode size varied from 115μm to 1mm, pulse duration from 6μs to 6ms, and number of pulses from 1 to 7,500. The threshold current density was independent of electrode sizes exceeding 400μm. With smaller electrodes the current density was scaling reciprocal to the square of the pipette diameter, i.e. acting as a point source so that the damage threshold was determined by the total current in this regime. The damage threshold current measured with large electrodes (1mm) scaled with pulse duration as t, which is characteristic of electroporation. For repeated electrical pulsed exposure on the retina the threshold current density varied between 0.059 A/cm2 at 6ms to 1.3 A/cm2 at 6μs. The dynamic range of safe stimulation, i.e. the ratio of damage threshold to stimulation threshold was found to be duration-dependent, and varied from 10 to 100 at pulse durations varying between 10μs to 10ms. Maximal dynamic range of 100 was observed near 1ms pulse durations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized design and implementation of electrical stimuli to reduce muscle pain and treat osteoarthritis

Today, electrical stimulation as a treatment method by creating muscle contraction by creating internal electrical stimulation is a method to reduce muscle pain. In addition, it is used to treat osteoarthritis. The aim of this study was to study, design and implement optimized hardware for electrical muscle stimulators to reduce pain and treat osteoarthritis. Here, the design of the optimal sys...

متن کامل

The Effects of Intramuscular Electrical Stimulation on Clinical And Sonographic Parameters in Patient With Trigger Points: A Case Series Study

Objective: Myofascial pain syndrome is a common disorder with a prevalence of up to 85%. It is characterized by the presence of trigger points, which all people are commonly encountered at least once throughout their lifespan. Different physical therapy and medical treatments have used to manage myofascial pain syndrome. Intramuscular electrical stimulation intervention is a relatively new trea...

متن کامل

Methodological Dimensions of Transcranial Brain Stimulation with the Electrical Current in Human

Transcranial current stimulation (TCS) is a neuromodulation method in which the patient is exposed to a mild electric current (direct or alternating) at 1-2 mA, resulting in an increase or a decrease in the brain excitability. This modi.cation in neural activities can be used as a method for functional human brain mapping with causal inferences. This method might also facilitate the treatments ...

متن کامل

A new approach to design safe and reliable electrical stimulator

In this paper, a new active charge-balancing technique for functional electrical stimulation is presented. In this method, electrode voltage is monitored after each stimulation period and a charge-balancing circuit keeps the electrode voltage in the safe range. Also, a dynamic comparator is utilised to reduce the total power consumption. This method is adopted in a microstimulator which is used...

متن کامل

Does High Frequency Transcutaneous Electrical Nerve Stimulation (TENS) Affect EEG Gamma Band Activity?

Background: Transcutaneous electrical nerve stimulation (TENS) is a noninvasive, inexpensive and safe analgesic technique used for relieving acute and chronic pain. However, despite all these advantages, there has been very little research into the therapeutic effects of TENS on brain activity. To the best of our knowledge, there is no evidence on the effect of high frequency TENS on the gamma ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006